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Abstract. I present two algorithms for solving dynamic programs with exogenous vari-
ables: endogenous value iteration and endogenous policy iteration. These algorithms are
always at least as fast as relative value iteration and relative policy iteration, and they are
faster when the endogenous variables converge to their stationary distributions sooner
than the exogenous variables.
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1. Introduction
An ergodic Markov decision process will eventually
forget the current action as its state variables regress to
their joint stationary distribution. After the variables
reach stationarity, the action information is lost. All
subsequent payoffs are independent of this action and
have no bearing on it. Thus, not all future payoffs
influence the current action—only those received be-
fore the action’s memory has been purged. This idea
underlies the relative value iteration and relative policy
iteration algorithms of Morton (1971) and Morton and
Wecker (1977), which disregard payoffs received after
the state variables reach stationarity.

However, not all state variables must reach statio-
narity for the current action to be forgotten, because not
all state variables encode action information. To be in-
formative of an action, a variable must respond to the
action. Because exogenous variables that evolve inde-
pendently of the actions do not encrypt action infor-
mation, the only payoffs that matter are those received
before the endogenous variables reach stationarity.

My new solution algorithms—endogenous value
iteration and endogenous policy iteration—exploit this
insight. They iterate Bellman contractions until the
endogenous state variables reach their joint stationary
distribution, and then, they stop. These algorithms are
faster than relative value and relative policy iteration
when the exogenous variables are more persistent than
the endogenous variables.

2. Markov Decision Process
An agent controls a Markov chain with a sequence of
actions. In a given period, the agent observes exoge-
nous state variable x ∈ x and endogenous state variable
y ∈ y and chooses action a∈ a in response. Action space

a is compact, exogenous state space x has finite car-
dinality X � |x|, endogenous state space y has finite
cardinality Y � |y |, and total state space z � x× y has
finite cardinality Z � XY. The state spaces are ordered:
xi, yi, and zi are the ith elements of x, y, and z. The total
state space z is arranged lexicographically:

z1 � (x1, y1), zY+1 � (x2, y1), ⋯ z(X−1)Y+1 � (xX, y1),
z2 � (x1, y2), zY+2 � (x2, y2), ⋯ z(X−1)Y+2 � (xX, y2),

⋮ ⋮ ⋮
zY � (x1, yY), z2Y � (x2, yY), ⋯ zXY � (xX, yY).

In general, zi � (xi, yi), where xi � x1+(i−mod(i,Y))/Y and
yi � y1+mod(i−1,Y).
The agent’s actions influence the endogenous vari-

able but not the exogenous variable. Specifically, taking
action a in state (x, y) sets the probability mass func-
tion of the next period’s state variables to f (x′, y′ |a,
x, y) � fx(x′ |x)fy (y′ |a, x, y). Function f is continuous
in a.1

The agent receives utility u(a, x, y) from taking action
a in state (x, y). The agent aims tomaximize its expected
infinite horizon utility under discount factor β< 1.
Function u is bounded and continuous in a.
The following Bellman equation implicitly defines

the agent’s optimal value function:

v∗(x, y) � max
a∈a u(a, x, y) + β

∑
x′∈x

∑
y′∈y

f (x′, y′ |a, x, y)v∗(x′, y′).

The corresponding optimal policy function is

p∗(x, y) � argmax
a∈a

u(a, x, y)
+ β

∑
x′∈x

∑
y′∈y

f (x′, y′ |a, x, y)v∗(x′, y′).
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Henceforth, v∗ and p∗ represent optimal value and policy
functions, respectively, and v and p represent generic
value and policy functions, respectively.

3. Variable Glossary
1. Ä is the Kronecker product symbol.
2. δi ( j) is the length-i unit vector indicating the jth

position.
3. δ( j) is the length-Z unit vector indicating the jth

position.
4. ιi is the length-i vector of ones.
5. ι � ιZ is the length-Z vector of ones.
6. Ii is the rank-i identity matrix.
7. I � IZ is the rank-Z identity matrix.
8. Δi � Ii − ιiδi(1)′ is the i× i differencing operator:

the jth element of Δiα is αj − α1.
9. Δ � ΔZ is the Z×Z differencing operator: the ith

element of ΔV is v(xi, yi) − v(x1, y1).
10. Ξ � ιYι

′
Y/Y is the matrix of ones divided by Y.

11. Ω � IY − Ξ is the Y×Y demeaning operator: the
ith element of Ωα is αi −∑Y

j�1αj/Y.
12. Λ � I − IX ÄΞ � IX ÄΩ is the Z×Z endogeniz-

ing operator: the ith element of ΛV is v(xi, yi) −∑Y
j�1v(xi, yj)/Y.
13. V is the value function, the length-Z vector with

ith element v(xi, yi).
14. V̆ � ΔV is the relative value function, the length-

Z vector with ith element v(xi, yi) − v(x1, y1).
15. V̄ � ΛV is the endogenous value function, the

length-Z vector with ith element v(xi, yi) −∑Y
j�1·

v(xi, yj)/Y.
16. U (p) is the utility function, the length-Z vector

with ith element u(p(xi, yi), xi, yi).
17. Fx is the exogenous state transition matrix, the

X×X matrix with ijth element fx(xj |xi).
18. Fy(p, x) is the endogenous state transition matrix,

the Y×Y matrix with ijth element fy(yj |p(x, yi), x, yi).
19. F(p) � ∑X

i�1(δX(i)δX(i)′ Fx)Ä Fy (p, xi) is the state
transition matrix, the Z×Z matrix with ijth element
f (xj, yj |p(xi, yi), xi, yi).

20. V � RZ is the set of value vectors.
21. Vx � colspace(IX Ä ιY) is the set of exogenous

value vectors.
22. Vy � V’

x is the set of endogenous value vectors.
23. p � az is the set of policy functions.
24. γ is the Bellman contraction function: γ(p,V) �

U (p) + βF(p)V.
25. π is the policy improvement operator: πV �

argmaxp∈pι′γ(p,V).2
26. ν is the value iteration operator: νV � γ(πV,V).
27. ν̆ � Δν is the relative value iteration operator.
28. ν̄ � Λν is the endogenous value iteration

operator.
29. η is the policy valuation operator: ηp � (I −

βF(p))−1U (p).
30. η̆ � Δη is the relative policy valuation operator.

31. η̄ � Λη is the endogenous policy valuation
operator.

32. ηt is the t-step policy valuation operator: ηtp �∑t
τ�0βτF(p)τU (p).
33. η̆t � Δηt is the relative t-step policy valuation

operator.
34. η̄t � Ληt is the endogenous t-step policy valua-

tion operator.
35. ρ � πη is the policy iteration operator.
36. ρ̆ � πη̆ is the relative policy iteration operator.
37. ρ̄ � πη̄ is the endogenous policy iteration

operator.
38. θε � ε(1 − β)/(2β) is the algorithm stopping

threshold.
39. φ is the function that maps a square matrix to its

spectral radius (largest eigenvalue modulus).
40. σ is the function that maps a square matrix

to its spectral subradius (second largest eigenvalue
modulus).

41. O represents big O convergence: f (t) is O(λt) if
there existM and t0, such that | f (t)| <M|λt | for all t> t0.

42. O+ represents the “high order” convergence of
Morton and Wecker (1977): f (t) is O+(λt) if f (t) is
O((λ + ε)t) for all ε> 0.

4. Traditional Algorithms
The value iteration algorithm iteratively sets Vt � νVt−1
until ‖Vt − Vt−1‖<θε, at which time policy πVt is ε
optimal. The policy iteration algorithm iteratively sets
pt � ρpt−1 until ‖νηpt−1 − ηpt−1‖<θε, at which time
policy pt is ε optimal. The most difficult part of policy
iteration is calculating value Vt � ηpt−1. A common
way to do so is to set η0p � U (p) and iterate ηtp �
γ(p, ηt−1p) to convergence (note that limt→∞ηtp � ηp).
The relative value iteration algorithm of Morton and

Wecker (1977) iteratively sets V̆t � ν̆V̆t−1 until ‖V̆t −
V̆t−1‖<θε, at which time policy πV̆t is ε optimal. The
relative policy iteration algorithm of Morton (1971)
iteratively sets pt � ρ̆pt−1 until ‖ν̆ηpt−1 − ηpt−1‖<θε, at
which time policy pt is ε optimal. The most difficult
part of relative policy iteration is calculating relative
value V̆t � η̆pt−1. One does so by setting η̆0p � ΔU (p)
and iterating η̆tp � Δγ (p, η̆t−1p) to convergence (note
that limt→∞η̆tp � η̆p).
The relative algorithms are faster than the standard

algorithms when the Markov chain is ergodic. Al-
though the standard algorithms consider all utilities
with meaningful discounted expectation, the relative
algorithms consider only the utilities received be-
fore the state variables revert back to their station-
ary distribution—the utilities received thereafter are
moot, because the Markov chain has forgotten the
current action by then. Disregarding these superflu-
ous utilities expedites the computation. Morton (1971)
and Morton and Wecker (1977) formalized this insight
with the following “strong convergence” results.3
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1. If the Markov chain is ergodic under policy p∗,
then relative value iteration converges faster than value
iteration: whereas ‖V∗ − νt0‖ is O(βt), ‖V̆∗ − ν̆t0‖ is
O+(βtσ (F(p∗))t), where σ (F(p∗))< 1.

2. If the Markov chain is ergodic under policy p,
then relative policy iteration’s valuation step con-
verges faster under policy p than policy iteration’s
valuation step: whereas ‖ηp − ηtp‖ is O(βt), ‖η̆p − η̆tp‖
is O+(βtσ (F(p))t), where σ (F(p))< 1.

5. Endogenous Algorithms
Whereas relative value iteration and relative policy
iteration disregard utilities incurred after all state
variables reach stationarity, endogenous value itera-
tion and endogenous policy iteration disregard utili-
ties incurred after all endogenous state variables reach
stationarity. The endogenous algorithms are never
slower than the relative algorithms, and they are strictly
faster when the endogenous variables converge to their
limiting distribution faster than the exogenous variables.
My algorithms exploit the following results.

Proposition 1.
1. The space of feasible value functions is the direct sum of

an exogenous space, which is the column space of IX Ä ιY,
and an endogenous space, which is the orthogonal comple-
ment of the exogenous space:

V � Vx ⊕Vy,
where Vx � colspace(IX Ä ιY)
and Vy � V’

x .

2. Endogenizing operator Λ � IX ÄΩ projects onto the
endogenous space: if V ∈V, thenΛV ∈Vy and (I −Λ)V ∈Vx.

3. The policy function only responds to the endogenous
value function: πV � πΛV.

Proposition 2. The optimal endogenous value function
identifies the optimal value and policy functions: V∗ � V̄∗ +
((IX − βFx)−1 ÄΞ)νV̄∗ and p∗ � πV̄∗.

Corollary 1. The vector of ones is exogenous: ι∈Vx.

Corollary 1 establishes that the policy function is
invariant to uniform shifts in the value function:
making all states $1 more valuable does not affect the
policy, because the agent receives the extra buck re-
gardless of the action. Because it is moot, the relative
algorithms disregard the portion of the value function
attributable to ι (the span of ι is the null space of Δ).
However, Propositions 1 and 2 indicate that we can
push this idea further: rather than nullify the span of ι,
we can nullify the entire Vx subspace.4

The endogenous algorithms do exactly that. Endoge-
nous value iteration iteratively sets V̄t � ν̄V̄t−1 until ‖V̄t −
V̄t−1‖<θε. Additionally, endogenous policy iteration
iteratively sets pt � ρ̄pt−1 until ‖ν̄ η̄pt−1 − η̄pt−1‖<θε.

The most difficult part of endogenous policy iteration
is calculating endogenous value V̄t � η̄pt−1. One does so
by setting η̄0p � ΛU (p) and iterating η̄tp � Λγ(p, η̄t−1p)
to convergence (note that limt→∞η̄tp � η̄p).
The following results establish that the endogenous

algorithms weakly dominate the relative algorithms.

Proposition 3. The endogenous value iteration and en-
dogenous policy iteration algorithms yield ε-optimal policies.

Proposition 4.
1. Endogenous value iteration converges at least as

fast as relative value iteration: whereas ‖V̆∗ − ν̆t0‖ is
O+(βtσ (F(p∗))t), ‖V̄∗ − ν̄t0‖ is O+(βtφ(ΛF(p∗))t), where
φ(ΛF(p∗)) ≤ σ (F(p∗)).

2. Endogenous policy iteration’s valuation step con-
verges at least as fast as relative policy iteration’s valuation
step: whereas ‖η̆p − η̆tp‖ is O+(βtσ (F(p))t), ‖η̄p − η̄tp‖ is
O+(βtφ(ΛF(p))t), where φ(ΛF(p)) ≤ σ (F(p)).
Proposition 5.

1. Endogenous value iteration converges faster than relative
value iteration when σ (Fx) exceeds maxx∈x ‖ΩFy(p∗, x)‖ for
some matrix norm ‖ · ‖.

2. Under policy p, endogenous policy iteration’s valua-
tion step converges faster than relative policy iteration’s
valuation steps when σ (Fx) exceedsmaxx∈x ‖ΩFy(p, x)‖ for
some matrix norm ‖ · ‖.
Corollary 2.

1. Endogenous value iteration converges faster than
relative value iteration when σ (Fx) exceeds

(a) the Euclidean norm of vec(ΩFy (p∗, x)) for all x∈ x,
(b) the largest singular value of ΩFy (p∗, x) for all x∈ x,
(c) the maximum absolute row sum of ΩFy (p∗, x) for

all x∈ x,
(d) the maximum absolute column sum of ΩFy (p∗, x)

for all x∈ x, or
(e) the Hajnal matrix seminorm of Fy (p∗, x) for all x∈ x.

2. Under policy p, endogenous policy iteration’s valua-
tion step converges faster than relative policy iteration’s
valuation steps when σ (Fx) exceeds

(a) the Euclidean norm of vec (ΩFy(p,x)) for all x∈x,
(b) the largest singular value ofΩFy(p, x) for all x∈ x,
(c) the maximum absolute row sum of ΩFy(p, x) for

all x∈ x,
(d) the maximum absolute column sum of ΩFy(p, x)

for all x∈ x, or
(e) the Hajnal matrix seminorm of Fy(p, x) for all x∈ x.

The Hajnal seminorm of a stochastic matrix is less
than onewhen thematrix is scrambling: that is, when no
two of its rows are orthogonal or when each pair of
states can transition to a common third state in one
period (Hajnal 1957). With this, Corollary 2 implies the
following.
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Corollary 3.
1. Endogenous value iteration converges faster than

relative value iteration when Fx is not ergodic and Fy(p∗, x)
is scrambling for each x ∈ x.

2. Under policy p, endogenous policy iteration’s valua-
tion step converges faster than relative policy iteration’s
valuation step when Fx is not ergodic and Fy(p, x) is
scrambling for each x ∈ x.

The conditions of Corollary 3 imply that y is ergodic
and that x is not.5 In this case, the relative algorithms
must consider all utilities not discounted to irrelevance,
but the endogenous algorithms must consider only the
subset of utilities incurred before y reaches stationarity.
For example, a seasonal state variable that cycles be-
tween {winter, spring, summer, fall} would void rela-
tive value iteration’s strong convergence but not
endogenous value iteration’s strong convergence as
long as Fy(p, x) scrambles.6

This scrambling assumption is unnecessary when y
has constant-state transition matrix Fy(p). In this case,
the endogenous algorithms are faster when Fx’s spec-
tral subradius exceeds Fy(p)’s spectral subradius.

Corollary 4.
1. Endogenous value iteration converges faster than re-

lative value iteration when Fy(p∗, x) � Fy(p∗) for all x∈ x and
σ (Fx)> σ (Fy(p∗)).

2. Under policy p, endogenous policy iteration’s valua-
tion step converges faster than relative policy iteration’s
valuation step when Fy(p, x) � Fy(p) for all x ∈ x and
σ (Fx)>σ (Fy (p)).

The deterministic equivalence problem of Higle et al.
(1990) and the quasi-open loop problem of Adelman
and Mancini (2016) both satisfy the Fy (p∗, x) � Fy (p∗)
and Fy (p, x) � Fy (p) conditions of Corollary 4.

6. Illustration
I now show endogenous value iteration with the
market entry problem of Aguirregabiria and Magesan
(2018). It was this problem and the ingenious Euler
equations-based solution ofAguirregabiria andMagesan
(2013) and Aguirregabiria and Magesan (2018) that
gave me the idea for endogenous value iteration.

The action is a Boolean that indicates whether the
firm participates in the market in year t (at � 1) or not
(at � 0). The endogenous state variable is a Boolean that
indicates the previous year’s market participation:
yt � at−1. The exogenous state variable is a vector of
length five: xt � [x1t , · · · , x5t ]′ ∈R5, where x1t is a firm
productivity factor, x2t and x3t are variable profit factors,
x4t is a fixed cost factor, and x5t is a market entry cost
factor. Each of these five factors can take five values,
and therefore, X � 55 � 3, 125.

The exogenous factors evolve independently of one
another. The ith exogenous factor follows Tauchen’s (1986)

finite-value approximation of the autoregressive pro-
cess xit � αi

0 + αi
1x

i
t−1 + eit, where eit is a standard normal,

αi
0 � 0.21(i � 1), andαi

1 � 0.91(i � 1) + 0.61(i≠ 1).7Note
that productivity shock x1t is more persistent than the
other exogenous factors (this will be important).
In period t, the agent receives utility u(at, xt, yt) +

et(a), where

u(at, xt, yt) � at⏟⏞⏞⏟
activity

exp(x1t )⏟̅̅⏞⏞̅̅⏟
productivity

(0.5 + x2t − x3t )⏟̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅ ⏟
variable profit

− (0.5 + x4t )⏟̅̅̅ ⏞⏞̅̅̅ ⏟
fixed cost

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− (1 − yt)⏟̅̅⏞⏞̅̅⏟
prior inactivity

(1 + x5t )⏟̅̅⏞⏞̅̅⏟
entry cost

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

and et(0) and et(1) are independent Gumbel random
variables with mean zero. Following convention, I
integrate over these error terms to express the value
function and policy function in terms of x and y
(Aguirregabiria and Mira 2010):

v∗(x, y) �
∫∫ (

maxa∈{0,1}u(a, x, y) + e(a)

+ β
∑
x′∈x

f (x′ |x)v∗(x′, a)
)
de(0)de(1)

� u(1, x, y) + β
∑
x′∈x

f (x′ |x)v∗(x′, 1) − ln (p∗(x, y))
where

p∗(x, y) �
exp

(
u(1, x, y) + β

∑
x′∈x f (x′ |x)v∗(x′, 1)

)
∑

a∈{0,1} exp
(
u(a, x, y) + β

∑
x′∈x f (x′ |x)v∗(x′, a)

),
and β � 0.95.

Note that the firm’s policy function denotes the prob-
ability that it enters the market, conditional on x and y
but not on e(0) and e(1).
I solve this problem with both endogenous value

iteration and relative value iteration. Relative value
iteration requires 62 Bellman contractions to converge
to within a 10−6 tolerance, but endogenous value it-
eration requires only 10. The endogenous algorithm
requires a sixth asmany iterations, because it converges
σ (F(p∗))/φ(ΛF(p∗)) � 0.56/0.082 � 6.52 times as fast.8

Figure 1 depicts how the endogenous value function
changes across the first six endogenous value iteration
steps and how the relative value function changes
across the first six relative value iteration steps. The
relative value differences are more persistent, because
they converge to a stair-step pattern that decays slowly.
The staircase’s five steps correspond to the five values
of productivity factor x1t (the most persistent exoge-
nous variable). However, these stair-step value func-
tion changes do not influence the policy function,
because the firm cannot influence its productivity.
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7. Conclusion
Not all of the value function constitutes useful in-
formation. Only the portion that influences the policy
function is signal—the rest is noise. To filter out this
noise, the relative value and policy iteration algorithms
use projection matrix Δ, and the endogenous value
and policy iteration algorithms use projectionmatrixΛ.
The latter operator removes more noise, because it has
a larger null space: whereas ΔV has XY − 1 degrees of
freedom, ΛV has only X (Y − 1) degrees of freedom.

The Λ operator projects away exogenous space Vx.
For simplicity, I have defined Vx � colspace(IX Ä ιY).
However, technically, I could expand the exogenous
space to

Ṽx � {v∈V | π(V + v) � πV∀V ∈V}
� {

v∈V |F(p1)v � F(p2)v∀ p1, p2 ∈ image(π)}.
Replacing Λ with Λ̃, the projection matrix onto Ṽy �
Ṽ’

x would yield even faster algorithms.

Proofs.

Lemma 1. My proofs use the following identities:
1. Δiιi � 0,
2. Ξ2 � Ξ,
3. Δ

2 � Δ,
4. Λ2 � Λ,
5. ΛΔ � Λ,

6. ΩΔY � Ω,
7. ΔF(p)Δ � ΔF(p),
8. ΛF(p)Λ � ΛF(p),
9. ΩFy(p, x)Ω � ΩFy(p, x),

10. F(p)(MÄΞ) � (FxM)ÄΞ for any X×X matrix M,
11. (MÄΞ)Λ � Λ(MÄΞ) � 0 for any X×X matrix

M, and
12. Δ(MÄΞ) � (ΔXM)ÄΞ for any X×X matrix M.

Proof. Basic algebra yields these results. □

Proof of Proposition 1. The first two points are straight-
forward. The third point stems from Lemma 1.10, which
implies that

πΛV � argmax
p∈p

ι′(U (p) + βF(p)ΛV)
� argmax

p∈p
ι′(U (p) + βF(p)(I − IX ÄΞ)V)

� argmax
p∈p

ι′(U (p) + βF(p)V− (Fx ÄΞ)V
� argmax

p∈p
ι′(U (p) + βF(p)V

� πV. □

Lemma 2. Λγ (p,ΛV) � Λγ(p,V).
Proof. This follows from Lemma 1.8. □

Lemma 3. ν̄tV � ν̄νt−1V � ΛνtV for any t∈N+.

Figure 1. Convergence of Relative and Endogenous Value Iteration
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Proof. This follows from Lemma 2. □

Proof of Proposition 2. This proof has nine parts.
1. Proposition 1 implies that πV̄∗ � πΛV∗ �

πV∗ � p∗.
2. Proposition 1 and Lemma 3 imply that πντV̄∗ �

πΛντV̄∗ � πν̄τV̄∗ � πV̄∗ � p∗ for all τ∈N. This implies
that νt+1V̄∗ − νtV̄∗ � βF(p∗)(νtV̄∗ − νt−1V̄∗) for all
t ∈ N+. By induction, this implies that νt+1V̄∗ − νtV̄∗ �
βtF(p∗)t(νV̄∗ − V̄∗) for all t ∈ N.

3. Lemma 1.10 implies that F(p)t (Fsx ÄΞ) � F(p)t−1·
F(p) (Fsx ÄΞ) � F(p)t−1 (Fs+1x ÄΞ), which by induction,
implies that F(p)t(IX ÄΞ) � F(p)t (F0x ÄΞ) � F(p)0·
(Ftx ÄΞ) � Ftx ÄΞ.
4. Lemma 1.2 implies that Ftx ÄΞ � (Ft−1x ÄΞ)·

(Fx ÄΞ), which by induction, implies that Ftx ÄΞ �
(Fx ÄΞ)t.
5. Points 3 and 4 imply that F(p)t(I − Λ) � (Fx ÄΞ)t

for any t∈N+.
6. Lemmas 1.2 and 1.11 imply that

(
I − βFx ÄΞ

)(
Λ + (IX − βFx)−1 ÄΞ)

� Λ + (IX − βFx)−1 ÄΞ − βFx(IX − βFx)−1 ÄΞ

� Λ + (IX − βFx)(IX − βFx)−1 ÄΞ

� Λ + IX ÄΞ

� I.

7. Point 6 implies that (I − βFx ÄΞ)−1 � Λ+
(IX − βFx)−1 ÄΞ.

8. Points 2 and 5 imply that

νt+1V̄∗ − νtV̄∗ � βtF(p∗)t(νV̄∗ − V̄∗)
� βtF(p∗)t(νV̄∗ − ν̄V̄∗)
� βtF(p∗)t(νV̄∗ −ΛνV̄∗)
� βtF(p∗)t(I −Λ)νV̄∗

� βt (Fx ÄΞ)tνV̄∗.
9. Points 7 and 8 imply that

V∗� lim
t→∞ν

tV̄∗

� νV̄∗ +∑∞
t�1

(νt+1V̄∗ − νtV̄∗)

� β0(Fx ÄΞ)0νV̄∗ +∑∞
t�1

βt(Fx ÄΞ)tνV̄∗

� (
I − βFx ÄΞ

)−1νV̄∗
� (Λ + (IX − βFx)−1 ÄΞ)νV̄∗
� V̄∗ + ((IX − βFx)−1 ÄΞ)νV̄∗. □

Proof of Corollary 1. This follows from Proposition 1. □

Proof of Proposition 3. Lemma 3 implies that limt→∞
ν̄tV � limt→∞ΛνtV � ΛV∗ � V̄∗, and Proposition 1 im-
plies that limt→∞ρ̄tp � limt→∞(πΛη)tηp � limt→∞(πη)t
p � limt→∞ρtp � p∗. These results imply that terminal
conditions ‖V̄t − V̄t−1‖<θε and ‖ν̄ η̄pt−1 − η̄pt−1‖<θε

hold after a finite number of iterations.

Now I show that the policy is ε optimal when these
terminal conditions are first met. I focus on endogenous
value iteration, but an equivalent argument holds for
endogenous policy iteration. The proof has 10 parts.

1. Suppose that endogenous value iteration returns
policy πV̄t after terminal condition ‖V̄t − V̄t−1‖<θε,
and define V0 � V̄t−1 + ((IX − βFx)−1ÄΞ)(νV̄t−1 − V̄t−1).

2. Lemma 1.11 implies that

Λ
((IX −βFx)−1ÄΞ

)� 0,

Λ
((
βFx(IX −βFx)−1)ÄΞ

)
� 0,

(I−Λ)((IX −βFx)−1ÄΞ
)� ((IX −βFx)−1ÄΞ

)
,

and

(I−Λ)
((
βFx(IX −βFx)−1)ÄΞ

)
�
((
βFx(IX −βFx)−1)ÄΞ

)
.

3. Point 2 implies that

ΛV0 � ΛV̄t−1 + Λ((IX − βFx)−1 ÄΞ)(νV̄t−1 − V̄t−1)
� ΛV̄t−1.

4. Proposition 1 and Point 3 imply that πV0 �
πΛV0 � πΛV̄t−1 � πV̄t−1.

5. Lemma 1.10 and Point 4 imply that

νV0 � U(πV0) + βF(πV0)V0

� U(πV̄t−1) + βF(πV̄t−1)
·
(
V̄t−1 + ((IX − βFx)−1 ÄΞ

)(νV̄t−1 − V̄t−1)
)

� νV̄t−1 + βF(πV̄t−1)((IX − βFx)−1 ÄΞ)
· (νV̄t−1 − V̄t−1)

� νV̄t−1 + ((βFx(IX − βFx)−1)ÄΞ
)(νV̄t−1 − V̄t−1).

6. Points 2 and 5 imply that

ΛνV0 � ΛνV̄t−1 +Λ((βFx(IX − βFx)−1)ÄΞ)
· (νV̄t−1 − V̄t−1)

� ΛνV̄t−1.

7. Points 2 and 5 imply that

(I −Λ)(νV0 − V0)
�
(
(I −Λ)νV̄t−1 + ((βFx(IX − βFx)−1)ÄΞ)
· (νV̄t−1 − V̄t−1)

)
−
(
(I −Λ)V̄t−1 + ((IX − βFx)−1 ÄΞ)

· (νV̄t−1 − V̄t−1)
)

� (I − Λ)(νV̄t−1 − V̄t−1)
−(((IX − βFx)(IX − βFx)−1)ÄΞ

)(νV̄t−1 − V̄t−1)
� (I − Λ)(νV̄t−1 − V̄t−1) − (IX ÄΞ)(νV̄t−1 − V̄t−1)
� (I − Λ)(νV̄t−1 − V̄t−1) − (I − Λ)(νV̄t−1 − V̄t−1)
� 0.
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8. Points 3, 6, and 7 imply that

νV0 − V0 � Λ(νV0 − V0) + (I − Λ)(νV0 − V0)
� Λ(νV0 − V0)
� ΛνV̄t−1 −ΛV̄t−1
� V̄t − V̄t−1.

9. Points 1 and 8 imply that ‖νV0 − V0‖<θε.
10. Points 6 and 9 imply that standard value iteration

returns policy πνV0 � πΛνV0 � πΛνV̄t−1 � πν̄V̄t−1 �
πV̄t when initialized with starting value V0. Because
standard value iteration always returns an ε-optimal
policy, πV̄t must be ε optimal. □

Lemma 4. Every eigenvalue of ΔXFx is an eigenvalue of
ΔF(p).
Proof. If ΔXFxv � λv, for some eigenvector v, then

ΔF(p)(vÄ ιY) � Δ

∑X
i�1

(
(δX(i)δX(i)′ Fx)Ä Fy(p, xi)

)
(vÄ ιY)

� Δ

∑X
i�1

(
δX(i)δX(i)′ Fxv)Ä (Fy (p, xi)ιY)

� Δ
((Fxv)Ä ιY

)
� (Fxv)Ä ιY − (ιδ(1)′)((Fxv)Ä ιY)
� (Fxv)Ä ιY −

(
(ιXδX(1)′)Ä (ιYδY(1)′)

)
· ((Fxv)Ä ιY)

� (Fxv)Ä ιY − (ιXδX(1)′ Fxv)Ä ιY
� (ΔXFxv)Ä ιY
� λvÄ ιY. □

Lemma 5. Every eigenvalue of ΛF(p) is also an eigenvalue
of ΔF(p).
Proof. The proof has nine parts.

1. Assume that there exists λ that is not an eigen-
value of ΔF(p) but is an eigenvalue of ΛF(p), with
corresponding eigenvector v.

2. Lemma 4 implies that λ is not an eigenvalue of
ΔXFx.

3. Point 2 implies that λ≠ 0, because ΔXFxιX �
ΔXιX � 0ιX.

4. Lemma 1.4 and Point 3 imply that v � ΛF(p)v/λ �
Λ(ΛF(p)v/λ) � Λv.

5. λ not being an eigenvalue of ΔF(p) implies that
λI − ΔF(p) is invertible.

6. Lemma 1.5 and Point 5 imply that

ΔF(p)
(
v + (

λI − ΔF(p))−1(I − Λ)ΔF(p)v
)

� ΛΔF(p)v + (I − Λ)ΔF(p)v
+ΔF(p)(λI − ΔF(p))−1(I −Λ)ΔF(p)v

� ΛF(p)v +
(
(λI − ΔF(p)) + ΔF(p)

)
· (λI − ΔF(p))−1(I − Λ)ΔF(p)v

� λ
(
v + (λI − ΔF(p))−1(I −Λ)ΔF(p)v

)
,

which implies that v+ (λI −ΔF(p))−1(I −Λ)ΔF(p)v � 0,
because otherwise, λ would be an eigenvalue of ΔF(p).

7. Lemmas 1.10 and 1.12 imply that

(λI −ΔF(p))((λIX −ΔX Fx)−1ÄΞ)
� λ(λIX −ΔXFx)−1ÄΞ−Δ

(
(Fx(λIX −ΔX Fx)−1)ÄΞ

)
� λ(λIX −ΔXFx)−1ÄΞ− (ΔX Fx(λIX −ΔX Fx)−1)ÄΞ
� ((λIX −ΔX Fx)(λIX −ΔX Fx)−1)ÄΞ
� IXÄΞ
� I −Λ.

8. Points 5 and 7 imply that (λI − ΔF(p))−1(I − Λ) �
(λIX − ΔXFx)−1 ÄΞ.

9. Lemma 1.11 and Points 4, 6, and 8 imply that

0 � Λ0
� Λ

(
v + (λI − ΔF(p))−1(I −Λ)ΔF(p)v

)
� Λv +Λ((λIX − ΔX Fx)−1 ÄΞ)ΔF(p)v
� Λv
� v,

which is a contradiction, because an eigenvector cannot be
zero.Thus, theassumption inPoint1mustbe incorrect. □

Lemma 6. σ (F) � φ(ΔiF) for any i× i stochastic matrix F.

Proof. I will first show that φ(ΔiF) ≥ σ (F). Let λ be an
eigenvalue of F with eigenvector v. Lemma 1.7 implies
that ΔiFΔiv � ΔiFv � λΔiv. Thus, λ is an eigenvector of
ΔiF when Δiv is nonzero, Δiv is nonzero when v is not
in the null space ofΔi, and v is not in the null space ofΔi
when it is not in the span of ιi. Because ιi is the ei-
genvector associated with F’s largest eigenvalue
(Puterman 2005, p. 595), the second largest eigenvalue
of F is an eigenvalue of ΔiF.
I will now show that σ (F) ≥φ(ΔiF). Let λ be an ei-

genvalue of ΔiF with eigenvector v. I will show that
σ (F) ≥ |λ| by analyzing three distinct cases.

1. If |λ| � 1, then Lemma 1.7 implies that
limt→∞‖ΔiFtv‖ � limt→∞‖(ΔiF)tv‖ � limt→∞‖λtv‖ �
‖v‖ ≠ 0. Additionally, if σ(F) < 1, then Puterman (2005,
p. 593, equation A6) and Lemma 1.1 imply that
limt→∞ΔiFt � 0, which is a contradiction. Accordingly,
σ(F) ≥ |λ| when |λ| � 1.

2. If v∈ span(ιi), then Lemmas 1.1 and 1.3 imply that
λv � ΔiFv � Δi(ΔiFv) � λΔiv � 0; this implies that
λ � 0, which implies that σ (F) ≥ |λ|.

3. If |λ|≠ 1 and v ∉ span(ιi), then Lemmas 1.1 and
Lemma 1.7 imply that λ is also an eigenvalue of F:

F(v − αιi) � ΔiF(v − αιi) + (Ii − Δi)F(v − αιi)
� ΔiFΔi(v − αιi) + (Ii − Δi)Fv − α(Ii − Δi)Fιi
� ΔiFΔiv + (Ii − Δi)Fv − α(Ii − Δi)ιi
� ΔiFv + (Ii − Δi)Fv − αιi
� λv + ιiδi(1)′Fv − (1 − λ)−1(δi(1)′Fv)ιi
� λv − λ(1 − λ)−1(δi(1)′Fv)ιi
� λ(v − αιi),

where α � (1 − λ)−1δi(1)′Fv.
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This implies that σ (F) ≥ |λ|, because σ ( F) is as large
as any eigenvalue of F with a modulus that does not
equal one (Puterman 2005, p. 595). □

Lemma 7. σ (F) � φ(ΩF) for any Y×Y stochastic matrix F.

Proof. Lemmas 1.6 and 1.9 imply that, if λ is an ei-
genvalue of ΔYF with eigenvector v, then λ is an ei-
genvalue of ΩF with eigenvector Ωv: ΩFΩv � ΩFv �
ΩΔYFv � λΩv. This implies that φ(ΩF) ≥φ(ΔYF). With
this, Lemma 6 implies the result. □

Proof of Proposition 4. The proof has three parts.
1. Lemmas 5 and 6 establish thatφ(ΛF(p)) ≤ σ (F(p)).
2. Lemmas 1.5 and 3 imply that ν̃t0 � ν̆ν̄t−10, where

ν̃ � ΔνΛ. Accordingly, ν̄t0 converges to V̄∗ at the same
rate as ν̃t0 converges to ν̆V̄∗. Note that ν̃ is equivalent to
the relative value iteration operator under state
transition matrix F̃(p) � (α′ι)−1(ια′ − ΔF(p)Λ) and
discount factor b̃ � βα′ι, where α is the vector with
the ith element that equals the minimum value in
the ith column of ΔF(p)Λ. Accordingly, the strong
convergence result of Morton and Wecker (1977) and
Bray (2019) implies that ‖ν̆V̄∗ − ν̃t0‖ is O+(b̃tσ( F̃(p∗))t)
as t→∞. Lemmas 1.1, 1.3, 1.5, and 6 imply that

b̃σ
(
F̃(p∗)) � b̃φ

(
ΔF̃(p∗))

� βα′ιφ((α′ι)−1Δ(ια′ − ΔF(p∗)Λ))
� βφ

(
ΔF(p∗)Λ)

� βφ
(
ΛΔF(p∗))

� βφ
(
ΛF(p∗)).

theorem 1.3.22 of Horn and Johnson (2013) establishes
the equivalence of φ(ΔF(p)Λ) and φ(ΛΔF(p)).

3. Lemma 2 implies that η̄tp � Ληtp. With this,
Lemmas 1.4 and 1.8 imply that η̄p − η̄ tp�Λ(ηp − ηtp) �
Λ
∑∞

τ�t+1βτF(p)τU (p) � βt+1ΛF(p)t+1∑∞
τ�0βτF(p)τU (p) �

βt+1ΛF(p)t+1ηp � βt+1(ΛF(p))t+1ηp, which is O+(βtφ ·
(ΛF(p))t) as t → ∞. □

Proof of Proposition 5. Lemmas 4 and 6 imply that
σ (F(p)) ≥ σ (Fx). Therefore, I just have to show that
φ(ΛF(p)) ≤maxx∈x‖ΩFy(p, x)‖. Let | | | · | | | be a vector
norm that is compatible with matrix norm | | · | | (Horn
and Johnson 2013, p. 347). Also, let λ be an eigenvalue
of ΛF(p) with corresponding eigenvector v. Note that
v � ∑X

i�1δX(i)Ä vi, where vi � (δX(i)′Ä IY)v. This implies
that

|λ|
⃒⃒⃒⃒⃒⃒
vi
⃒⃒⃒⃒⃒⃒ � ⃒⃒⃒⃒⃒⃒(δX(i)′Ä IY)ΛF(p)v⃒⃒⃒⃒⃒⃒
�
⃒⃒⃒
⃒⃒
⃒⃒⃒
⃒⃒
⃒⃒⃒
⃒⃒(δX(i)′Ä IY)(IX ÄΩ)

·
(∑X

k�1
(δX(k)δX(k)′Fx)Ä Fy(p, xk)

)

·
(∑X

j�1
δX ( j)Ä vj

)⃒⃒⃒⃒⃒
⃒⃒⃒
⃒⃒
⃒⃒⃒
⃒⃒

�
⃒⃒⃒
⃒⃒
⃒⃒⃒
⃒⃒
⃒⃒⃒
⃒⃒∑X
j�1

∑X
k�1

(δX(i)′δX(k)δX(k)′ FxδX( j))

Ä (ΩFy(p, xk)vj)
⃒⃒⃒
⃒⃒
⃒⃒⃒
⃒⃒
⃒⃒⃒
⃒⃒

�
⃒⃒⃒
⃒⃒
⃒⃒⃒
⃒⃒
⃒⃒⃒
⃒⃒∑X
j�1

(δX(i)′ FxδX( j))Ä (ΩFy(p, xi)vj)
⃒⃒⃒
⃒⃒
⃒⃒⃒
⃒⃒
⃒⃒⃒
⃒⃒

≤∑X
j�1

δX(i)′FxδX ( j)
⃒⃒⃒⃒⃒⃒
ΩFy(p, xi)vj

⃒⃒⃒⃒⃒⃒

≤∑X
j�1

δX(i)′FxδX ( j)
⃒⃒⃒⃒
ΩFy(p, xi)

⃒⃒⃒⃒ ⃒⃒⃒⃒⃒⃒
vj
⃒⃒⃒⃒⃒⃒

≤∑X
j�1

δX(i)′FxδX ( j) ‖ΩFy(p, xi)‖max
k

|||vk |||

� ‖ΩFy(p, xi)‖max
k

|||vk |||,
≤max

j
‖ΩFy (p, xj)‖max

k
|||vk |||.

This implies that |λ| ≤maxx∈x ‖ΩFy(p, x)‖ . □

Proof of Corollary 2. These conditions are simply
Proposition 5 evaluated under different matrix norms.
The first corresponds to the Frobenius norm, the
second corresponds to the ℓ2 norm, the third corre-
sponds to the ℓ∞ norm, the fourth corresponds to the
ℓ1 norm, and the fifth corresponds to the Hajnal matrix
seminorm induced by the span vector seminorm
(Puterman 2005, p. 198). The results hold under the
Hajnal seminorm, because the eigenvector associated
with the largest eigenvalue of ΛF(p) has strictly
positive span; this eigenvector has strictly positive
span, because it is not a multiple of ι, and it is not
a multiple of ι, because ι is an eigenvector of ΛF(p)
with zero eigenvalue. □

Proof of Corollary 3. If Fx is not ergodic, then σ(Fx) � 1
(Puterman 2005, p. 595). Also, if Fy (p∗, x) and Fy (p, x)
are scrambling, then the expressions in (1e) and (2e) of
Corollary 2 are less than one. □

Proof of Corollary 4. For any ε> 0, there exists a matrix
norm ‖ · ‖ε such that ‖ΩFy (p)‖ε ≤φ(ΩFy (p)) + ε (Horn
and Johnson 2013, p. 347). With this, Proposition 5 and
Lemma 7 imply the result. □
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Endnotes
1My approach extends to the more general specification in which
f (x′, y′ |a, x, y) � fx(x′ |x)fy (y′ |a, x, x′, y). In this case, the state transi-
tion matrix defined in Section 3 changes to F(p) � ∑X

i�1
∑X

j�1(δX(i) ·
δX(i)′ Fx(δX ( j)δX ( j)′)ÄFy(p, xi, xj), where Fx is the X×X matrix with
ijth element fx(xj |xi) and Fy(p, x, x′) is the Y×Y matrix with ijth el-
ement fy(yj |p(x, yi), x, x′, yi).
2 I assume that πV is unique.
3Bray (2019) actually provided the first valid proof of the first result.
4Note that Vx does not store all of the information about x; it stores
only the information about x that is independent of y.
5Note that ergodicity in Fy(p, x), for each x∈ x, does not imply er-
godicity in y. For example, if

Fx � 0 1
1 0

[ ]
, Fy(p, x1) � 0 1

.5 .5

[ ]
, and

Fy(p, x2) � .5 .5
1 0

[ ]
,

then y is periodic, although Fy (p, x1) and Fy(p, x2) are both ergodic.
However, y must be ergodic if Fy (p, x) is scrambling for each x∈ x
(Seneta 2006, p. 80).
6Paarsch and Rust (2009, p. 1) explain that many dynamic programs
in economics contain such a seasonal component: “Many dynamic
programming problems encountered in practice involve a mix of state
variables, some exhibiting stochastic cycles (such as unemployment rates)
and others having deterministic cycles. Examples of the latter include the
day of the week as well as the month and the season of the year.. . .Most
real-world problems involve complicated interactions between variables
that evolve according to deterministic cycles and those that evolve
according to stochastic cycles. In many nonlinear models, no simple
method exists to isolate the deterministically evolving components from
the stochastically evolving ones, especially when agents are responding
endogenously to both kinds of components.”
7 Following Tauchen (1986), I set each factor’s five values to the
sextiles of the underlying AR(1) process’s unconditional distribution.
8Chen (2017) reported similar results, explaining that endogenous
value iteration solved her acid rain dynamic programs 5.2 times faster

than relative value iteration and 83 times faster than standard value
iteration.
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